

Choose the correct answer

In any triangle XYZ, XY : $YZ = \dots$ (a) sin X : sin Y (b) sin Y : sin Z (c) sin Z : sin X

(d) $\sin Z : \sin Y$

0122 73 75 987

XY:YZ = Z:z= Sin Z: Sin X

Together we can make math easie

2

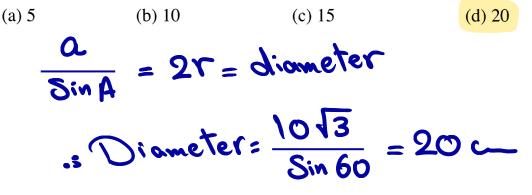
In \triangle ABC, if m (\angle A) = 30°, C = 15 $\sqrt{3}$ cm., m (\angle C) = 60°, then a = cm. (a) 30 (b) 45 (c) 15 (d) 60

 $\frac{\alpha}{\sin 30} = \frac{15\sqrt{3}}{\sin 60}$ $\frac{a}{SinA} = \frac{c}{SinC}$

a :	15 13 Sin 30	= 150
	Sin 60	= 10000

DEF is a triangle in which m (\angle D) = 80° and m (\angle E) = 60°, if f = 12 cm., then d = cm.

3


(a) $\frac{12 \sin 80^{\circ}}{\sin 40^{\circ}}$ (b) $\frac{12 \sin 80^{\circ}}{\sin 60^{\circ}}$ (c) $\frac{12 \sin 40^{\circ}}{\sin 80^{\circ}}$ (d) $\frac{12 \cos 80^{\circ}}{\cos 40^{\circ}}$ m(4F) = 180 - (80 + 60) = 40 $\frac{d}{8inD} = \frac{f}{8inF} \implies \frac{d}{8in80} = \frac{12}{8in40}$ $d = \frac{128in80}{8in40}$

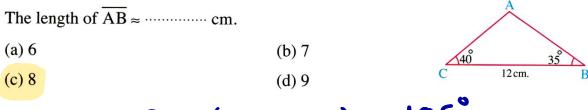
In \triangle ABC, if a = 4 cm., b = 7 cm., m (\angle C) = 120°, then the area of the triangle = cm². (a) $7\sqrt{3}$ (b) $14\sqrt{3}$ (c) 7 (d) 14

4

A. of $\triangle ABC = \frac{1}{2}ab\delta inC$ = $\frac{1}{2}(4)(7)\delta in120$ = $7\sqrt{3}c^{2}$

0122 73 75 987

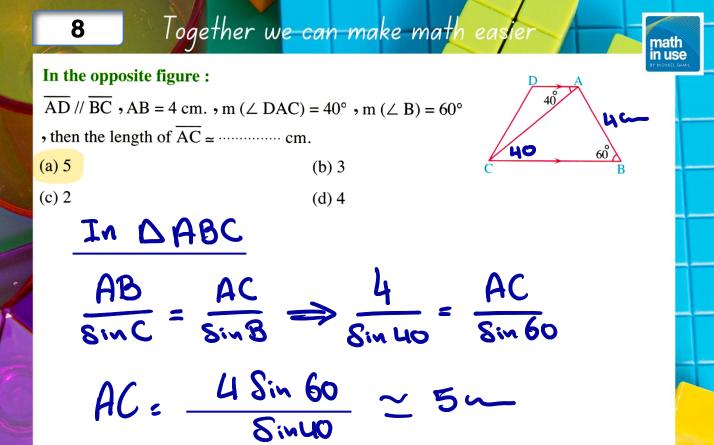
In ΔXYZ , $\frac{x}{\sin X} = 6$, then the length of the diameter of its circumcircle is length units. (a) 6 (b) 12 (c) 3 (d) 9


 $\frac{x}{\sin x} = 2r = 6$ Diameter = 6

6

In the opposite figure :

7

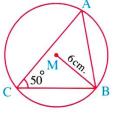


 $m(LA) = 180 - (40 + 35) = 105^{\circ}$

8 in 105

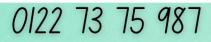
AB	BC	AB	12
	SinA	Sin 40	Sin 105
AB=	<u>2 Sin40</u>	~ 8	~

0122 73 75 987



Together w<mark>e can ma</mark>ke math easie

In the opposite figure :


9

M is the centre of the circle BM = 6 cm., then $AB = \dots \text{ cm.}$ (a) $6 \sin 50^{\circ}$ (b) $12 \sin 50^{\circ}$ (c) $6 \cos 50^{\circ}$ (d) $12 \cos 50^{\circ}$

math in use

 $\frac{AB}{Sin C} = 2\Gamma$ $\frac{AB}{AB} = 2(6)$ $\frac{AB}{Sin 50} = 12 Sin 50^{\circ}$

10

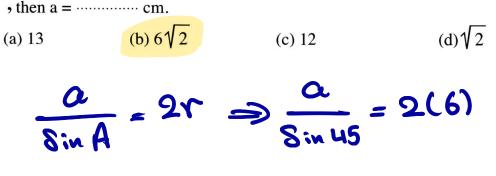
Together we can make math easier

A circle with diameter of length 20 cm., passes through the vertices of \triangle ABC which is an acute-angled triangle in which BC = 10 cm., then m (\angle A) =°

 $\frac{10}{8inA} = \frac{20}{1} \implies SinA = \frac{1}{2}$ = m (LA) = Sin'($\frac{1}{2}$) = 30°

(a) 30 (b) 60 (c) 45 (d) 150 $a = BC = 10 - \frac{a}{8 + A} = 21$

Mr. Michael Gamil


0122 73 75 987

11

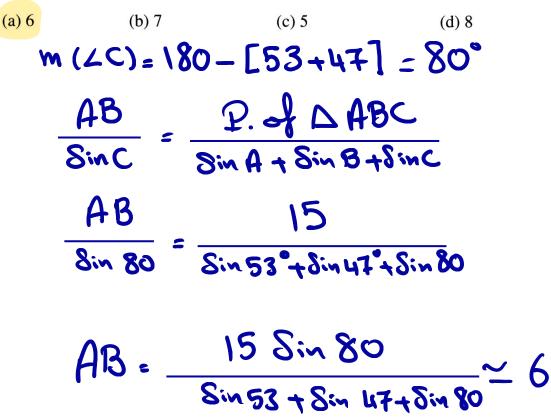
Together we can make math easie

In triangle ABC, $m(\angle A) = 45^\circ$, the length of the radius of its circumcircle = 6 cm.

0122 73 75 987

a = 12 Sin 45 = 6 12 c

If the length of a side in any triangle = 12 cm. and the measure of the opposite angle to this side = 55° , then the circumference of the circle that passes through the vertices of this triangle \simeq cm.


(a) 36 (b) 42 (c) 46 (d) 52 $\frac{a}{\sin A} = 2\Gamma \implies 2T = \frac{12}{\sin 55}$ $\simeq 14.65$ CirC. of the CirCle = $2\pi r$ $= 14.65 Ti \simeq 46$

math in use

12

Together w<mark>e can make math easi</mark>

If the perimeter of triangle ABC equals 15 cm., $m(\angle A) = 53^{\circ}$, $m(\angle B) = 47^{\circ}$, then the length of $\overline{AB} \simeq \dots \dots \mod m$.

Together w<mark>e can ma</mark>ke math easie 14 In triangle ABC , a = 27 cm. , $m (\angle B) = 82^{\circ}$, $m (\angle C) = 56^{\circ}$ (a) 540 (b) 447 (c) 350 (d) 400 $m(\angle A) = 180 - [82 + 56]$ = 42° $\frac{a}{\sin A} = \frac{b}{\sin B} \implies \frac{27}{\sin 42} = \frac{b}{\sin 82}$ $b = \frac{275in82}{5in42} - 39.96$ $A \cdot d \Delta ABC = \frac{1}{2} ab Sin C$ $=\frac{1}{2}(27)(39.96)$ Sin 56

Mr. Michael Gamil

15	Together u	v <mark>e can ma</mark> ke l	math easier	math
	ABC, $m (\angle A) : m (\overline{C} \simeq \dots cm.$	$\angle B$): m ($\angle C$) = 2	: 3: 4, AB = 12 cm., th	ien the
(a) 10	(b) 11	(c) 16	(d) 18	
A	:B:C;8	MM.		
2	:3:4:			
	· · · ·			
ml	- A) = 40°	, m(1B).	= 60°, m(2C)	= 80
	$\frac{b}{\sin B} = \frac{C}{\sin B}$	$\Rightarrow \stackrel{AC}{\leftarrow}$	$\frac{12}{5} = \frac{12}{5in 80}$	
0	21. D 9.W	C OM		
F	tC = <u>12 Siv</u> Siv	$\frac{60}{80} = 11$	د	

In triangle ABC, which of the following statements is true?

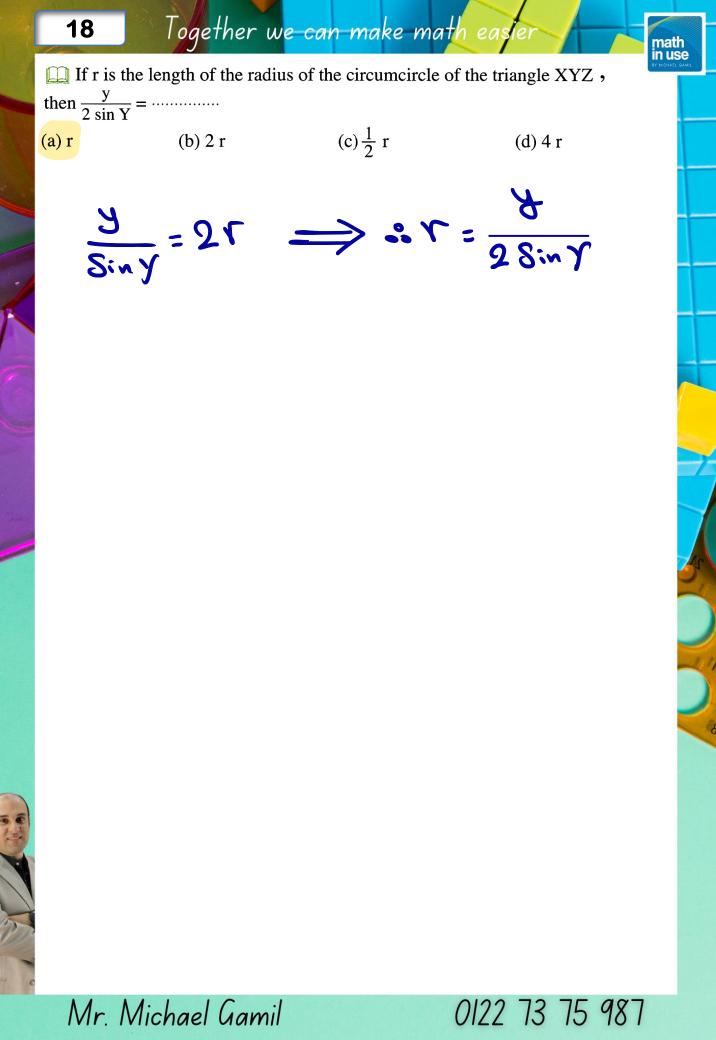
- (a) $\sin A + \cos B = a + b$ (b) $a \sin B = b \sin A$
- (c) $a = b \sin c$

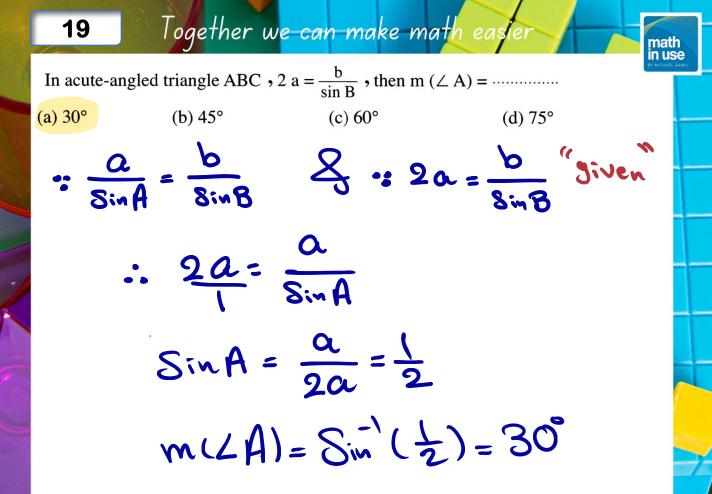
16

(d)
$$\frac{a}{\sin A} = \frac{\sin B}{b}$$

 $\frac{a}{\sin A} \stackrel{b}{\Rightarrow} = a \sin B = b \sin A$

0122 73 75 987


17


math in use

In $\triangle XYZ$, 2 r sin X = "where r is the radius length of its circumcircle" (a) z (b) y (c) X (d) area of $\triangle XYZ$

 $\frac{\mathcal{K}}{\mathcal{Sin}X} = \frac{2r}{1} \implies \mathcal{K} = 2r \mathcal{Sin} X$

In \triangle ABC, sin A = 2 sin C, BC = 6 cm., then AB = cm.

20

(a) 2 (b) 3 (c) 4 (d) 6 1 Sin A = 2 Sin C Sin A = 2 Sin C Sin C = $\frac{2}{1} \Rightarrow \therefore \frac{\alpha}{C} = \frac{2}{1}$ $\therefore \frac{BC}{AB} = \frac{2}{1}$ $\therefore \frac{6}{AB} = \frac{2}{1} \Rightarrow \therefore AB = 3m$

Together we can make math easi

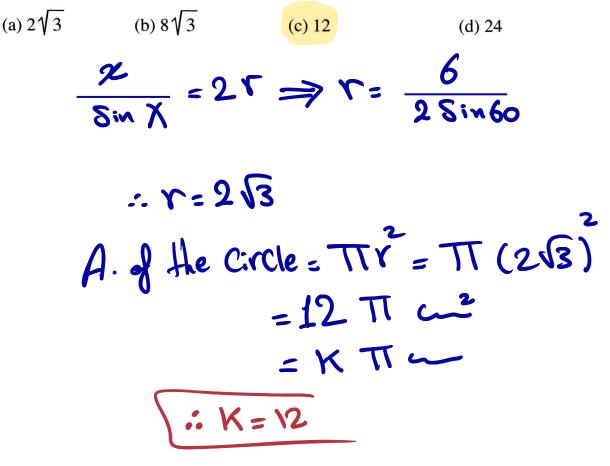
math in use

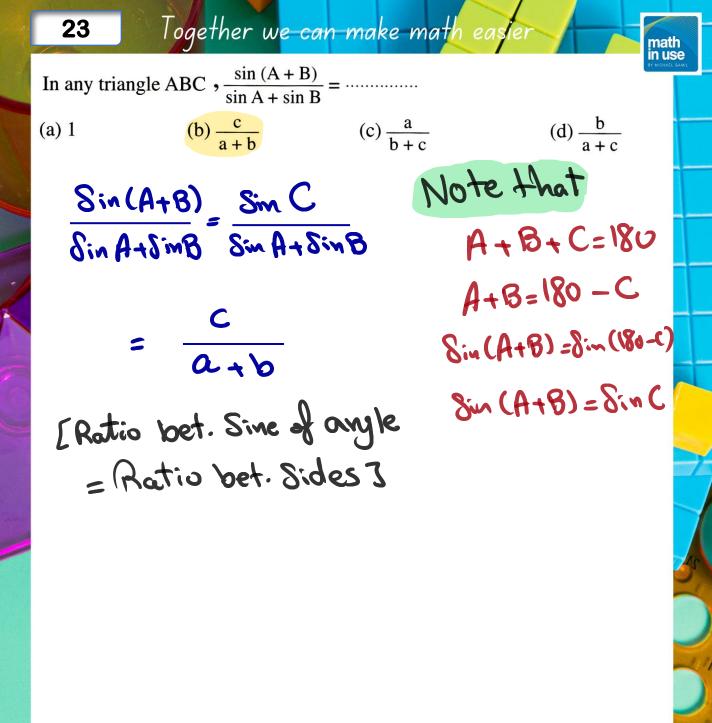
If the radius length of circumcircle of \triangle ABC equals 3 cm. and sin A + sin B + sin C = 2, then the perimeter of triangle ABC = cm.

(a) 6 (b) 9 (c) 12 (d) 24 $\frac{P. F \Delta ABC}{Sin A+Sin B+Sin C} = 2V$

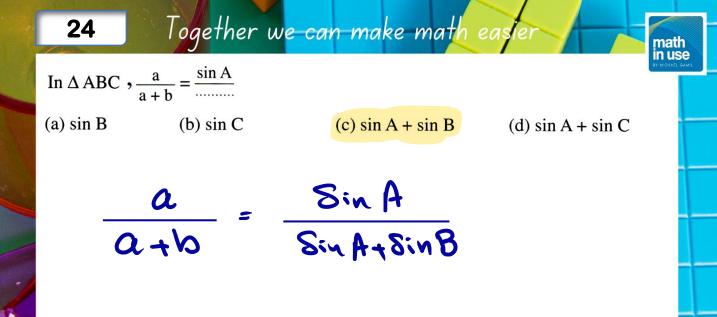
21

P. = 0 ABC = 2r [Sin A + Sin B + Sin C]= 2(3) [2] = 12 c

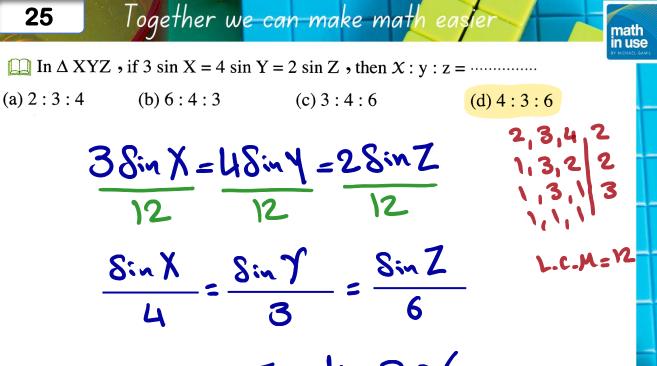

Together we can make math easie

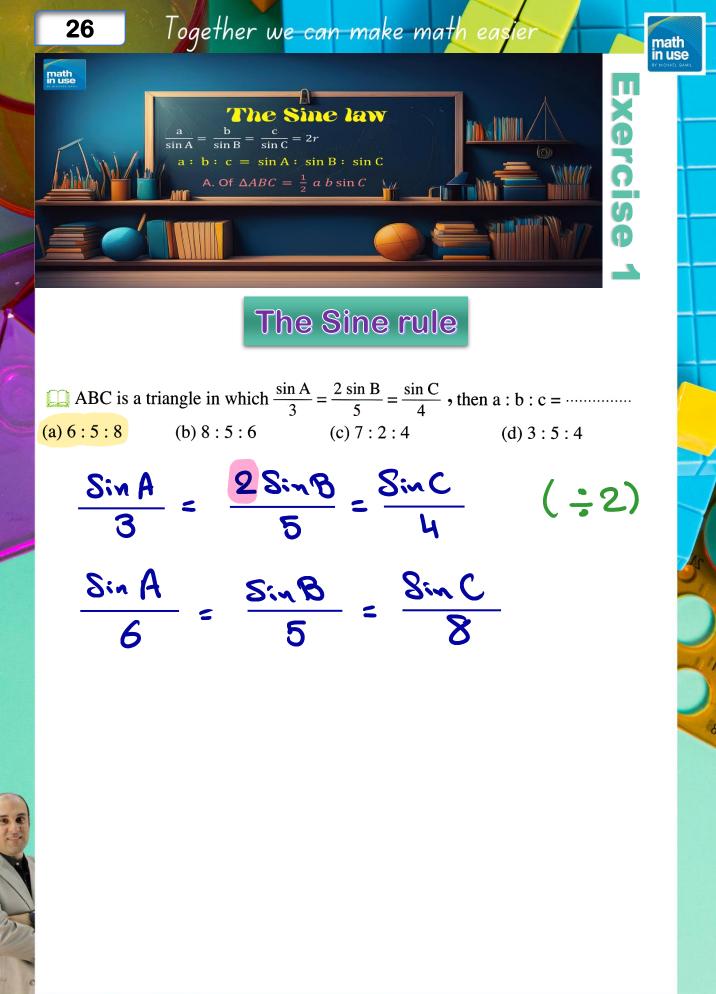

math in use

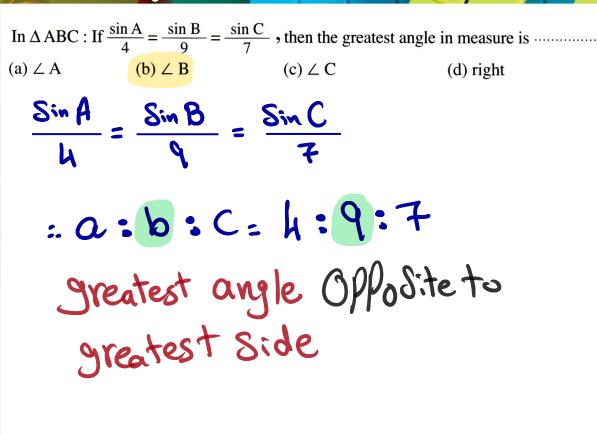

0122 73 75 987


ABC is an equilateral triangle, its side length is 6 cm. and the area of its circumcircle equals $k \pi \text{ cm}^2$, then $k = \dots$

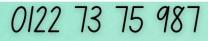
22



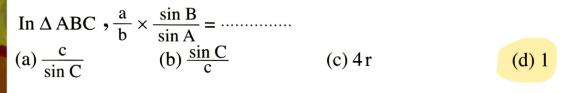



0122 73 75 987

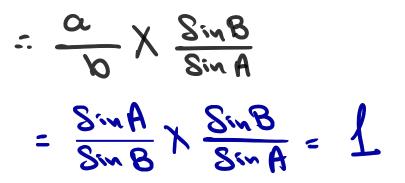
. x :y:Z= 4:3:6



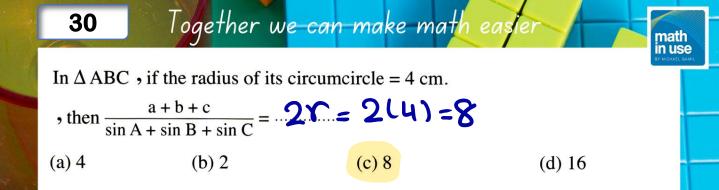
27

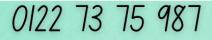


Mr. Michael Gamil


28 Together	w <mark>e can ma</mark> ke math	easier math
In triangle ABC, $m (\angle A)$: , then $c^2 : a^2 = \dots$	$m (\angle B) : m (\angle C) = 3 : 3$	5 : 4
(a) $\sqrt{6}: 2$ (b) 2: 3	(c) 4 : 3	(d) 3 : 2
A:B:C:	Sum	
3:5:4:	. 12	
<i>j</i> : <i>j</i> : <i>j</i>		
$m(LA) = 45^{\circ}$	-	m (LC)=60°
C:a= 8	sin C: Sin A	
= 8	in 60: Sin 4	5
=	16:2	
$\therefore C^2 \cdot C^2 =$	6:4=[3:2

Together we can make math easier

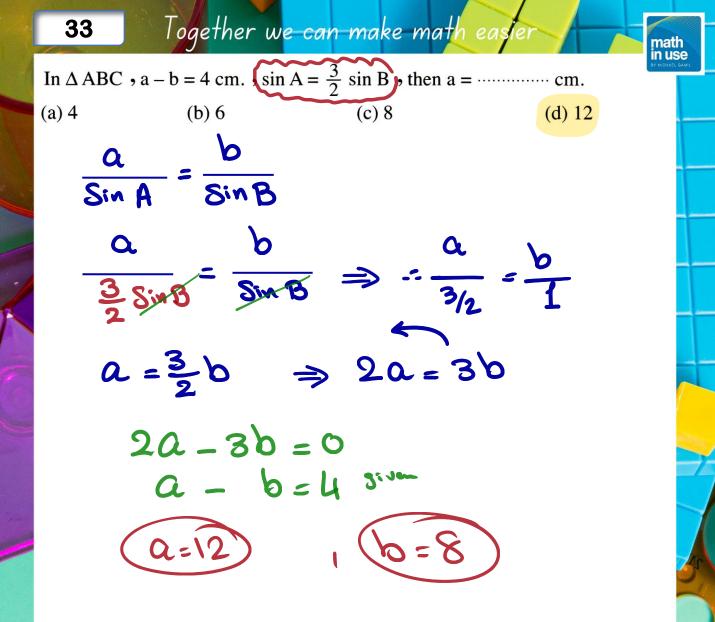



29

0122 73 75 987

math in use If \triangle ABC is a right-angled at \angle B and b = 10 cm. , then $\frac{a}{\sin A} + \frac{c}{\sin C} = \dots \dots \dots \dots \dots \dots$ (b) 20 (a) 10 (d) 100 (c) 40 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $\frac{a}{\sin A} + \frac{C}{\sin C} = \frac{b}{\sin B} + \frac{b}{\sin B}$ $= \frac{2b}{\sin 8} = \frac{2(10)}{\sin 90} = 20$

0122 73 75 987


math in use

32

If the radius of the circumcircle of \triangle ABC equals r, then the perimeter of the triangle = (sin A + sin B + sin C)

(c) $4 r^2$ (d) $8 r^3$ (a) r (b) 2 r $\frac{P.of \triangle ABC}{Sin A + Sin B + Sin C} =$

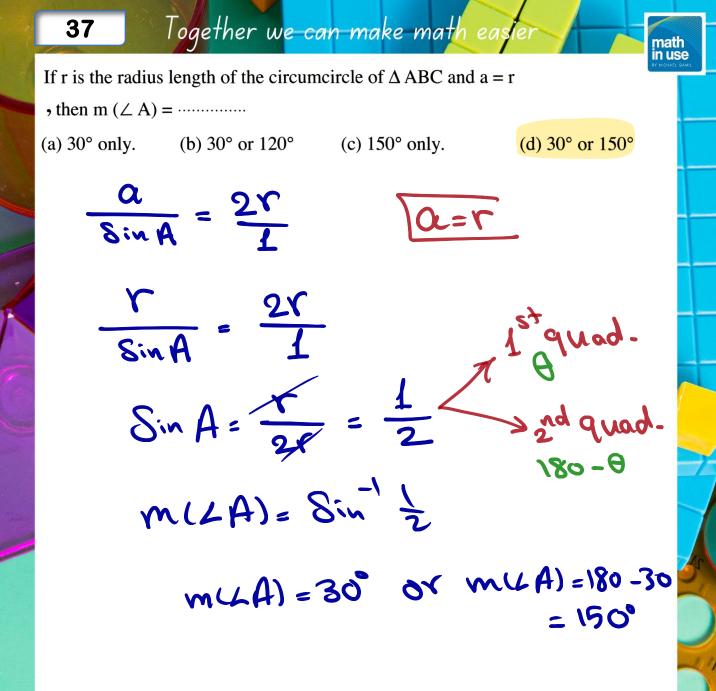
P. of DABC = 2r [SinA+SinB+SinC]

0122 73 75 987

34

If the perimeter of \triangle ABC is 24 cm. and sin A + sin B = 3 sin C, then C = cm. (b) 6 (c) 8 (a) 4 (d) 9 $\frac{C}{SinC} = \frac{P.ADABC}{SinA+SinB+SinC}$ С 24 SinC 3SinC + SinC C = 24 4 SinC C=6~

Mr. Michael Gamil


35 T	ogether we	can make math	easier	math
ABC is a triangl		$C = 4 \sin A$ and $b + c$	= 2 a + 10 cm.	BY MICHAEL GAMIL
(a) 2	(b) 3	(c) 4	(d) 5	
<u>a</u>	a the	0+C		
SinA	SinAt	Sin B + Sin C)	
<u>a</u>	a+	2a +10		
Sin A	SinA	1+4SinA		
a	30	+10		_
SinA	5	Sint		
5	a = 30	a + 10		
	2a =			
	-	2=5		Ď

00	gether	we	can	make	math	eas	le
----	--------	----	-----	------	------	-----	----

36

math in use In \triangle ABC, AB = 8 cm., BC = 12 cm., m (\angle A) – m (\angle C) = 90° , then tan C = (c) $\frac{3}{4}$ (d) $\frac{4}{3}$ (a) $\frac{2}{3}$ (b) $\frac{3}{2}$ C SinC A - C = 90SinA A = QO + C8 12 Cos C Sinc Sin A = Sin (90+C)Sin A = GSC $\frac{8inC}{Cosc} = \frac{8}{12}$ $\tan C = \frac{2}{3}$

0122 73 75 987

Together w<mark>e can make math easi</mark>e

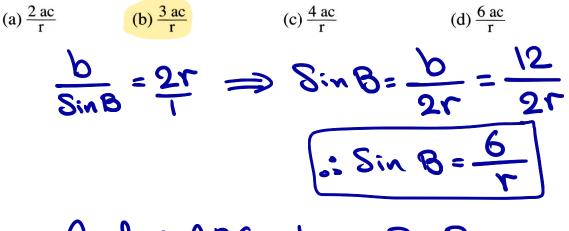
38

math in use If the area of the triangle ABC is Δ and r is the radius length of the circumcircle of the triangle ABC, then : $\frac{4 \text{ r} \Delta}{abc} = \cdots$ (a) 1 (b) 2 (c) 4(d) 8 A. of $\triangle ABC = \frac{1}{2}abSinc$ $\frac{4r\Delta}{abc} = \frac{4r(\frac{1}{2}absinc)}{abc}$ " but come = 2T SinC $\frac{SinC}{C} = \frac{1}{0r}$ $= 2r \cdot \frac{1}{2r} = 1$

Mr. Michael Gamil

In \triangle ABC, $\frac{2 \text{ b}}{\sin \text{ B}}$ =r (where r is the radius of its circumcircle)				
(a) 1	(b) 2	(c) 4	(d) 8	

 $\frac{b}{\delta inB} = 2\Gamma$ ••


 $\frac{2b}{\sin B} = 2(2r) = 4r$

math in use

math in use

40

ABC is a triangle , b = 12 cm., the radius length of its circumcircle is r, then the area of the triangle = cm².

 $A \cdot f \Delta ABC = \frac{1}{2} aC \sin B$ $= \frac{1}{2} aC \cdot \frac{6}{r} = \frac{3aC}{r}$

0122 73 75 987

Together we can make math easier

math in use

0122 73 75 987

41

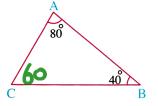
If the triangle ABC is an isosceles right-angled triangle and r is the radius length of the circumcircle of the triangle ABC, then the area of \triangle ABC = (in terms of r)

(a)
$$\frac{1}{2}r^{2}$$
 (b) $2r^{2}$ (c) r^{2} (d) $4r^{2}$
 $\Gamma = \frac{a}{2 \text{ Sin US}} = \frac{b}{2 \text{ Sin US}} = \frac{c}{2 \text{ Sin QO}}$
(a) $\frac{15}{4}a$
(b) $\Gamma = \frac{a}{\sqrt{2}} = \frac{b}{\sqrt{2}} = \frac{c}{2}$
(c) r^{2} (d) $4r^{2}$
(c) r^{2}
(d) $4r^{2}$
(c) r^{2}
(d) $4r^{2}$
(c) r^{2}
(c) r^{2}
(d) $4r^{2}$
(c) r^{2}
(c) $r^{$

Together we can make math easie

In the opposite figure :

If the perimeter of \triangle ABC = 20 cm. ,


then the diameter length of its circumcircle \approx cm.

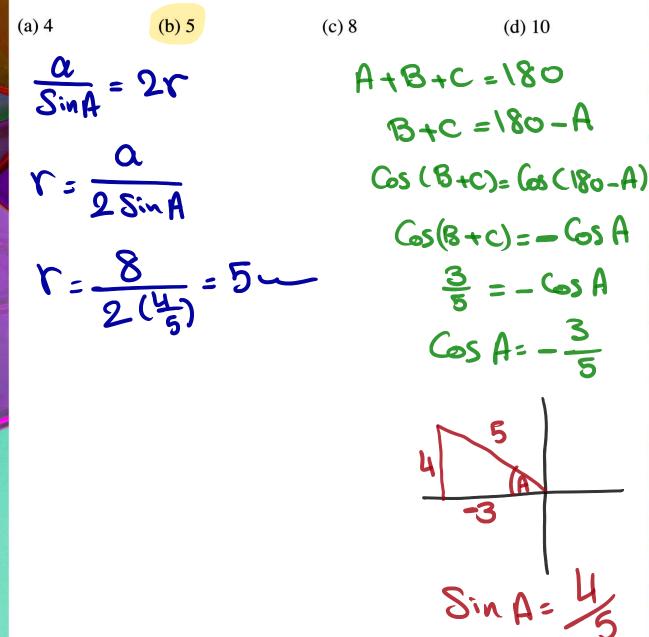
(a) 2

(c) 6

42

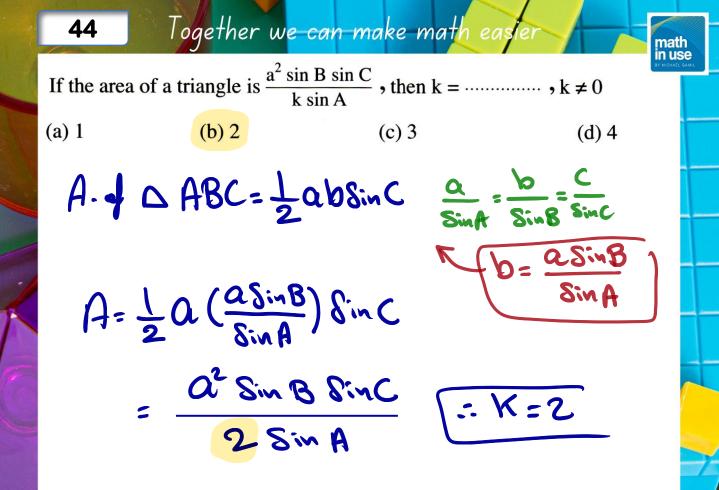
math in use

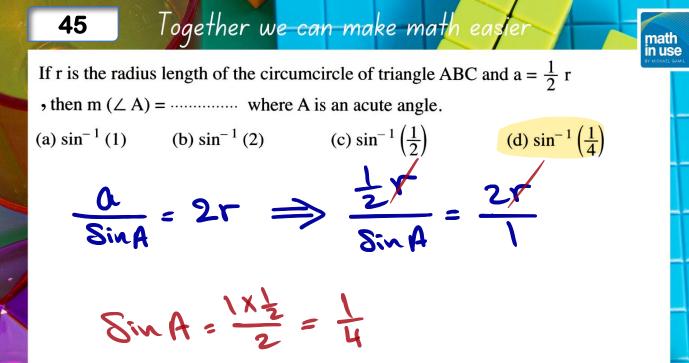
 $P. \rightarrow DABC = 2T$ Sin A+Sin B+Sinc

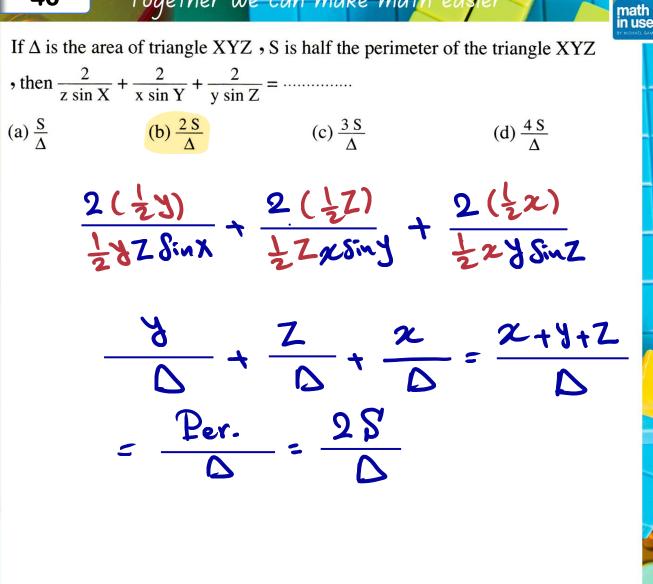

20 Sin 80+Sin 40+Sin 60 2r =

Diameter = 8 cm

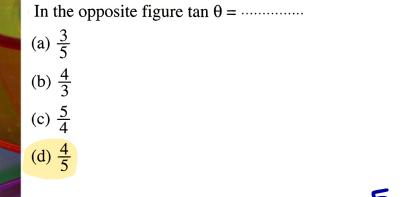
0122 73 75 987


In \triangle ABC, $\cos (B + C) = \frac{3}{5}$, BC = 8 cm., then the radius length of the circumcircle of \triangle ABC = cm.

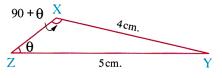

43

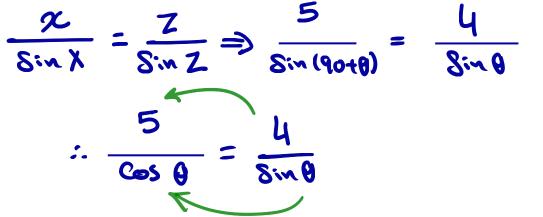

0122 73 75 987

math in use

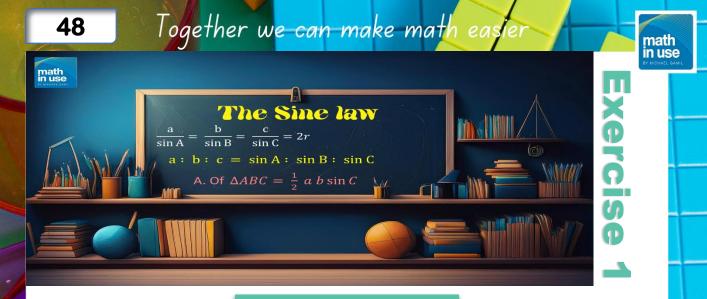


 $m(AA) = Sin^{-1}(L)$




0122 73 75 987

Together we can make math easier


47

= 4 5 $\frac{\sin \theta}{\cos \theta}$ \Rightarrow tan $\theta = \frac{4}{5}$

Mr. Michael Gamil

The Sine rule

Answer each of the following questions

1 XYZ is a triangle in which m ($\angle X$) = 80°, m ($\angle Y$) = 60° and z = 10 cm.

, find each of X and y to the nearest cm.

« 15 cm. , 13 cm. »

0122 73 75 987

 $m(27) = 180 - (80 + 60) = 40^{\circ}$

 $\frac{\mathcal{X}}{\mathcal{Sin} X} = \frac{\mathcal{Y}}{\mathcal{Sin} Y} = \frac{\mathcal{Z}}{\mathcal{Sin} Z} \Rightarrow \frac{\mathcal{X}}{\mathcal{Sin} 80} = \frac{\mathcal{Y}}{\mathcal{Sin} 60} = \frac{10}{\mathcal{Sin} 40}$

$$\chi = \frac{10 \text{ Sin 80}}{\text{Sin 40}} \simeq 15 \text{ m}$$

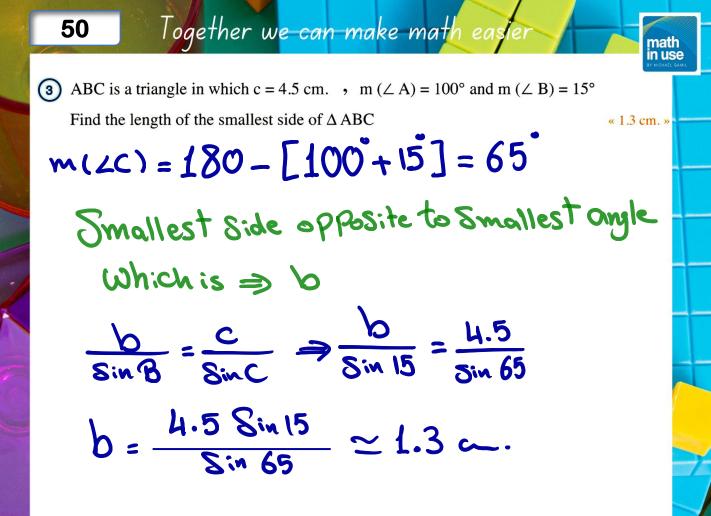
$$y = \frac{108in60}{8in40} \simeq 13c$$

Mr. Michael Gamil

Together we can make math easier

2 \square LMN is a triangle in which m = 68.4 cm. , m (\angle M) = 100° and m (\angle N) = 40° , find : (1) ℓ

(2) The length of the radius of the circumcircle of the triangle LNM


(3) The area of the triangle LMN $(44.64 \text{ cm.}, 34.73 \text{ cm.}, 981.34 \text{ cm}^2)$

nath n use

m(LL) = 180 - [100 + 40] = 40

49

 $\frac{l}{\sin L} = \frac{m}{\sin M} = 2T$ $\frac{l}{5.5 \text{ kg}^2} = \frac{68.4}{5 \text{ in 100}}$ $l = \frac{68.4 \text{ Sin 40}}{\text{Sin 100}} \simeq 44.64$ $r = \frac{m}{2 \sin M} = \frac{68.4}{2 \sin M} \simeq 34.73$ A.of $DLMN = \frac{1}{2} LMSin N$ $=\frac{1}{2}$ (44.64)(68.4) Sim 40° = 981.34 ~2

ABC is a triangle in which m ($\angle A$) = 60° and a = 7 $\sqrt{3}$ cm. Find the area and the circumference of the circumcircle of $\triangle ABC \left(\pi = \frac{22}{7}\right)$ «154 cm², 44 cm.»

$$\frac{a}{\sin A} = 2r \implies r = \frac{a}{2 \sin A}$$

$$\therefore r = \frac{7\sqrt{3}}{2 \sin 60} = 7$$

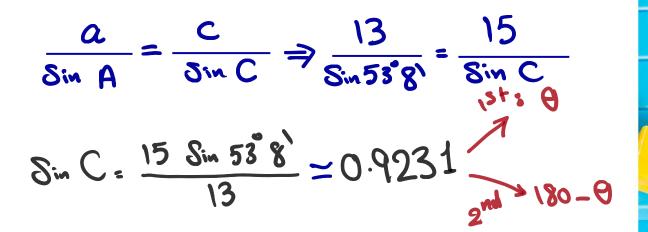
Area of the Circle = πr^{2}

$$= \frac{22}{7}(7)^{2} = 154 c^{2}$$

Circumference = $2\pi r = 2\chi \frac{22}{7}\chi 7$

$$= \frac{44}{7} = 44$$

Mr. Michael Gamil


0122 73 75 987

math in use

5 ABC is a triangle in which : a = 13 cm., $m(\angle A) = 53^{\circ} \hat{8}$, c = 15 cm. Find the radius length of the circumcircle of $\triangle ABC$, then find $m(\angle C)$ « 8.1 cm., 67° 23 9 or 112° 36 51 »

math in use

$$r = \frac{a}{2 \sin A} = \frac{13}{2 \sin 53^{\circ} 8^{\circ}} \simeq 8.1 c.$$

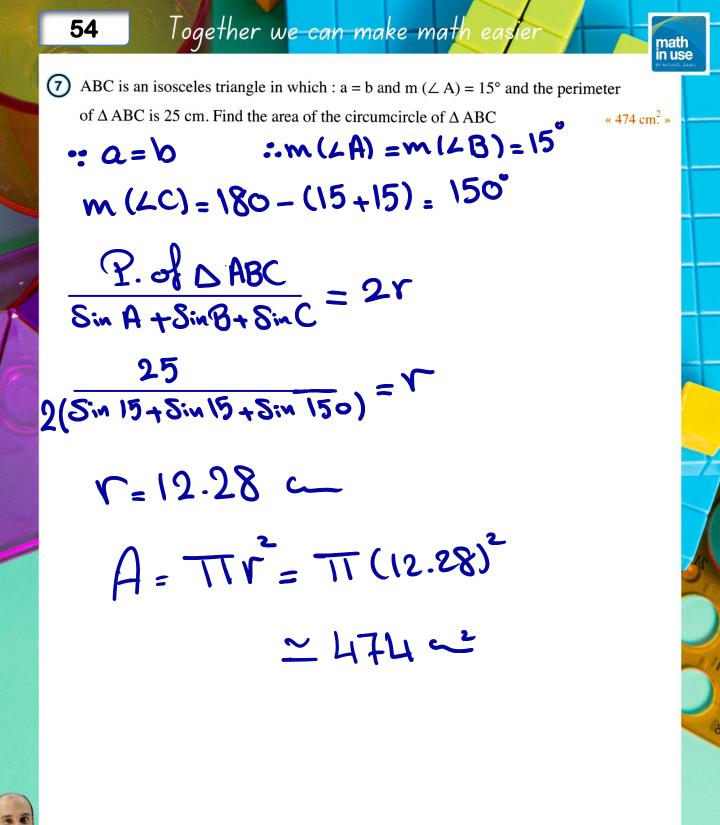

0122 73 75 987

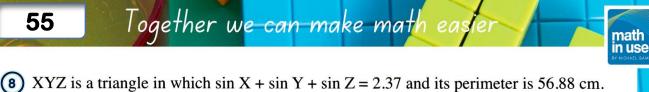
$$\theta = Sin'(0.9231) = 67^{\circ} 23^{\circ} 9^{\circ}$$

 $180^{\circ} - \theta = 112^{\circ} 36^{\circ} 51^{\circ}$

nath n use

0122 73 75 987


53


 $m(LC) = 180 - (57^{\circ}13^{\circ} + 64^{\circ}18^{\circ}) = 58^{\circ}29^{\circ}$ $\frac{C}{8in C} = \frac{P. of ABC}{8in A + 5in B + 5in C}$ $\frac{8 \cdot 7}{8in 58^{\circ}29^{\circ}} = \frac{P. of ABC}{5in 57^{\circ}13^{\circ} + 8in 68^{\circ}18^{\circ} + 8in 58^{\circ}29^{\circ}}$

 $P. J DABC \simeq 26.76$

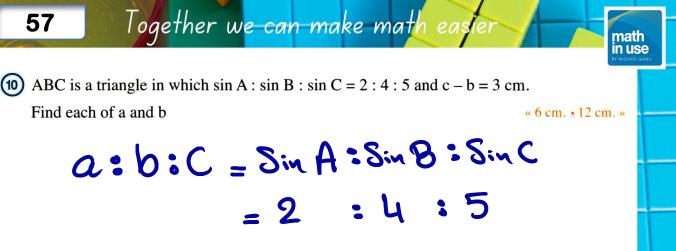
Mr. Michael Gamil

0122 73 75 987

Find the length of the radius of the circumcircle of ΔXYZ

 $\Gamma = \frac{P. - f \Delta X Z}{2(\delta in X + \delta in Y + \delta in Y + \delta in Z)} = \frac{56.88}{2(2.37)}$

r=12 m


Mr. Michael Gamil

0122 73 75 987

« 12 cm. »

56	Together w <mark>e can make math easier math in use</mark>		
(a) ABC is a triangle in which m ($\angle A$) : m ($\angle B$) : m ($\angle C$) = 1 : 3 : 5 Find the length of the smallest side of $\triangle ABC$ if its perimeter equals 16 cm. «2.5 cm.»			
A:B:C:Sum			
1:3:5:9			
?:?: ?: \&o			
m(LA)= 20°, m(LB)=60°, m(LC)= 100°			
Smallest Side is Q			
	2 $PJDABC$		
8:	$A = \overline{SinA + SinB + SinC}$		
0	2 16		
81	n 20 Sin 20 + Sin 60 + Sin 100		
a .:	$= \frac{16 \sin 20}{\sin 20 + \sin 100} \simeq 2.5 \text{cm}^{-100}$		

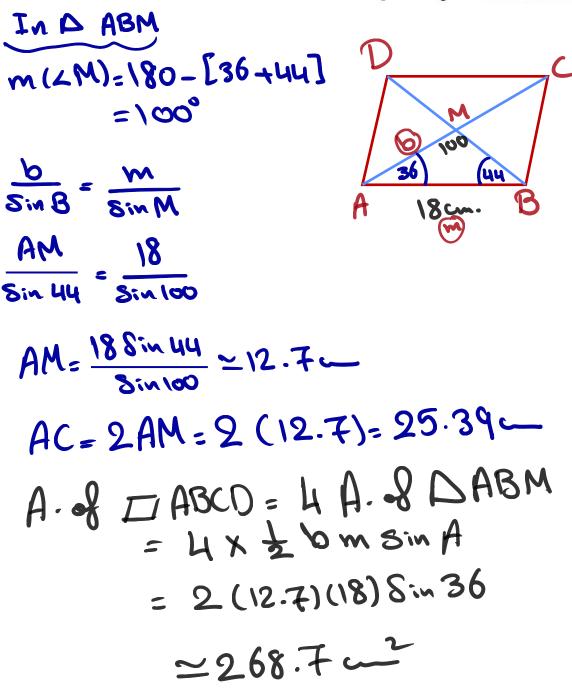
Mr. Michael Gamil

a:b:C: C-b 2:4:5:1 ?: ?: ? = 3

 $\alpha = \frac{2\times 3}{=} = 6$ $b = \frac{4x3}{1} = 12c$

57

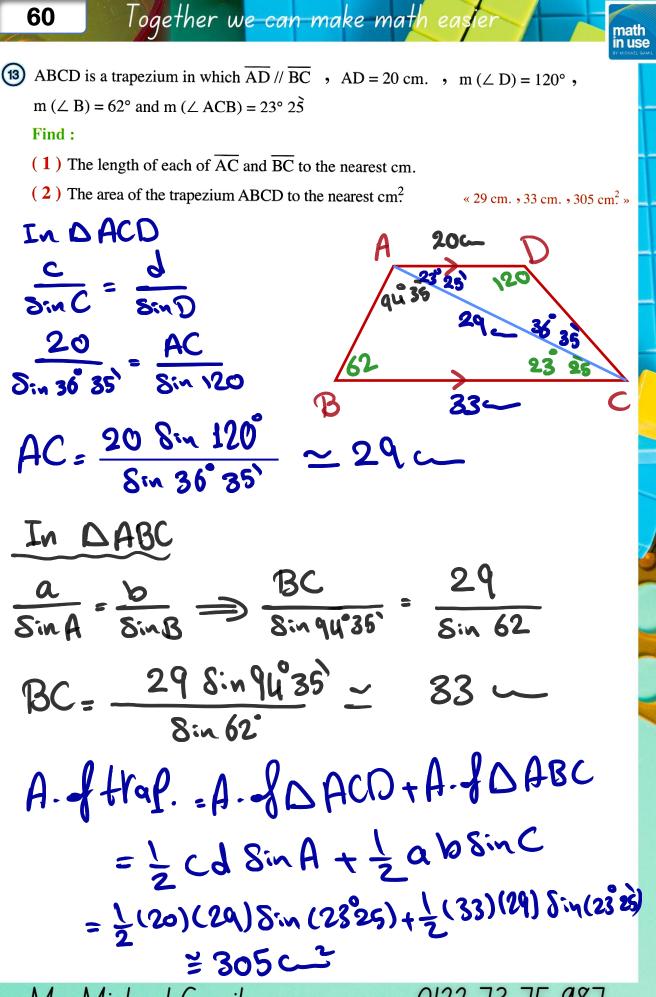
(1) \square ABC is a triangle in which m ($\angle A$) = $\frac{2}{3}$ m ($\angle B$) = $\frac{1}{2}$ m ($\angle C$), the length of the radius of its circumcircle = 10 cm. Find the area of $\triangle ABC$ «110 cm²»


A + B + C = 180 $A + \frac{3}{2}A + 2A = 180$ 41 A= 180 ⇒ m(LA)=40° $m(LC) = 80^{\circ}$ $m(LB) = 60^{\circ}$ $\frac{a}{\sin A} = \frac{b}{\sin B} = 2\Gamma$ $\frac{a}{5in40} = \frac{b}{5in60} = 20$ a=20 Sin 40° ~ 12.86~ b= 20 Sin 60° ~ 17.32 -A. of DABC= Jab SinC $=\frac{1}{9}(12.86)(17.32)$ Sin 80 ~ 110 cm

Mr. Michael Gamil

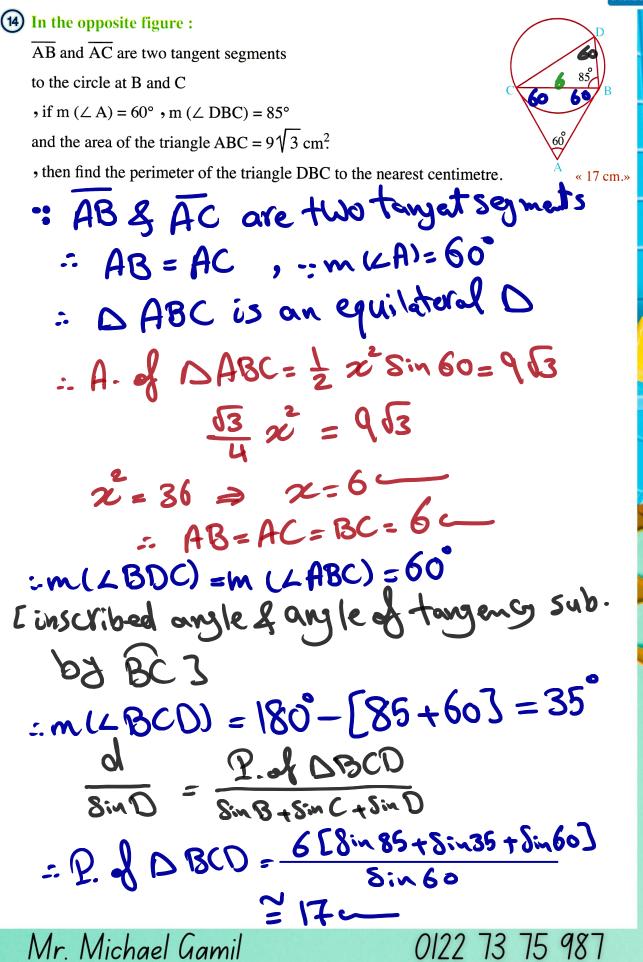
0122 73 75 987

nath n use


(12) ABCD is a parallelogram in which AB = 18 cm., $m (\angle CAB) = 36^{\circ}$ and $m (\angle DBA) = 44^{\circ}$ Find the length of the diagonal \overline{AC} and the area of the parallelogram. (25.39 cm., 269 cm²) »

Mr. Michael Gamil

0122 73 75 987


nath n use

Mr. Michael Gamil

Together w<mark>e can ma</mark>ke math easie

math in use

Together we can make math easie

15 In the triangle ABC , prove that :

 $\sin A + \sin B + \sin C = \frac{4 \text{ S } \Delta}{a \text{ b } c}$

where S is half of the triangle's perimeter and Δ is the triangle's area.

 $R.H.S' = \frac{4S}{abc} = \frac{4x}{2}(a+b+c)x\frac{1}{2}absinc}{abc}$ $= (\alpha + b + c) \times \frac{SinC}{C}$ $= (a+b+c) \times \frac{8inA+8inB+8inC}{a+b+c}$ = Sin A+Sin B+SinC = L.H.S

0122 73 75 987