math in use

0122 73 75 987

The moment of a force about a point in <u>2D-co</u>ordinate system

First : Moment by using vector product

Choose the correct answer

1

If the force \vec{F} acts at the point (A) , \vec{M}_O is the moment of \vec{F} about the origin O , then

(a)
$$\overrightarrow{M}_{O} = \overrightarrow{OA} \times \overrightarrow{F}$$

(b) $\overrightarrow{M}_{O} = \overrightarrow{OA} \cdot \overrightarrow{F}$
(c) $\overrightarrow{M}_{O} = \overrightarrow{F} \cdot \overrightarrow{OA}$
(d) $\overrightarrow{M}_{O} = \overrightarrow{F} \times \overrightarrow{OA}$

0122 73 75 987

If $\vec{F} = 2\hat{i} - 3\hat{j}$, A (2, 1) \in the line of action of \vec{F} , O is the origin , then $\vec{M}_0 = \dots \hat{k}$ (a) -8 (b) 8 (c) 1 (d) 7 $\vec{M}_0 = \vec{O}\vec{A} \times \vec{F}$ = (2,1) × (2,-3) = (-6-2) $\vec{K} = -8 \vec{K}$

0122 73 75 987

If force $\vec{F} = 2\hat{i} + 5\hat{j}$ acts at the point A = (-3, 1), then the moment of \vec{F} about the point N (2, -4) equals (a) $15\hat{k}$ (b) $35\hat{k}$ (c) $-\hat{k}$ (d) $-35\hat{k}$

M, = NA x F = (-5,5) x (2,5) $= (-25 - 10)\hat{r} = -35\hat{k}$

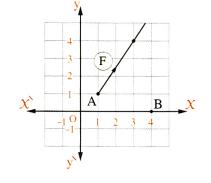
math in use

In the opposite figure :

4

If $\vec{F} = 20 \hat{i} + 30 \hat{j}$ acts at the point A (1, 1) , then the moment of the force \vec{F} about the point B (4, 0) = \hat{k} (a) - 110 (c) 70 (d) - 90

 $M_{g} = BA \times F$



0122 73 75 987

 $= (-3,1) \times (20,30)$ $= (-90-20) \hat{k} = -10 \hat{k}$

0122 73 75

987

If $\vec{F} = 7\hat{j}$ acts at the point (-3, 0), then the moment of the force \vec{F} about the point (1, -2) is (a) $-28\hat{k}$ (b) $28\hat{k}$ (c) $14\hat{k}$ (d) $-14\hat{k}$ $\vec{M}_{B} = \vec{B}\vec{A} \times \vec{F}$ $= (-4, 2) \times (0, \vec{F})$ $= -28\hat{k}$

73 75

0122

987

If $\vec{F} = 6\hat{i} - 8\hat{j}$ acts at the point A (3, -2), then the length of the perpendicular drawn from the point B (2, 4) to the line of action of the force $\vec{F} = \dots \dots$ length unit.

(a) 5.4 (b) 2.8 (c) 28 (d) 4.4 $M_{B} = BA \times F$ $= (1, -6) \times (6, -8)$ $= (-8 + 36) K = 28 \hat{K}$ $L = \frac{\|M_{B}\|}{\|F\|} = \frac{28}{\sqrt{6}^{2} + (-8)^{2}} = 2.8 L. U.$

If the sum of the moments of some forces about A = the sum of the moments of these forces about B, then the line of action of their resultant

(a) is perpendicular to AB
(c) bisects AB

8

(b) is parallel to \overline{AB} (d) coincide with \overline{AB}

0122 73 75 987

 $\overline{M_A} = \overline{M_B} \implies :. \overline{R} //AB$

If the sum of the moments of force \vec{F} about two points A , B vanished , then the line of action of \vec{F}

(a) is parallel to \overline{AB}

9

(c) passes through A or B

 $\overline{M}_{A} + \overline{M}_{B} = \overline{O}$

 $= \overline{M_A} = -\overline{M_B}$

(b) is perpendicular to AB(d) bisects AB

0122 73 75 987

If $\vec{F} \neq \vec{O}$, then all the following are true except (a) if the line of action of $\vec{F} // \vec{AB}$, then $\vec{M}_A - \vec{M}_B = \vec{O}$ $\vec{M}_A = \vec{M}_B = \vec{O}$ (b) if the line of action of \vec{F} bisects \vec{AB} , then $\vec{M}_A + \vec{M}_B = \vec{O}$ $\vec{M}_A = -\vec{N}_B$ (c) if $A \in$ the line of action of \vec{F} , then $\vec{M}_A \neq \vec{O}$ (d) if the line of action of \vec{F} acts along \vec{AB} , then $\vec{M}_A = \vec{M}_B = \vec{O}$

0122 73 75

987

15

0177

987

If the force $\vec{F} = (\ell, m)$ acts at the point A (4, 8) and the moment of \vec{F} about B (3, 9) equals 40 \hat{k} , then $\ell + m = \dots$

(a) 40 (b) 20 (c) 10(d) 80 $\overline{M_{B}} = \overline{BA} \times \overline{F} = 40 \hat{K}$ $(1, -1) \times (l, m) = UOR$ $(m+l)\hat{f} = 40\hat{\kappa}$: m + l = 40

If $\vec{F} = 5\hat{i} + 12\hat{j}$ and its line of action has the equation -12X + 5y = zero, then the moment of the force \vec{F} about B (-3, 1) equals \hat{k}

(a) zero (b) - 11 (c) 31 (d) 41 let $A \in Line$ of action $put (X = 0) \therefore Y = 0$ $\therefore A = (0, 0)$ $\overline{MB} = \overline{BA} \times \overline{F} = (3, -1) \times (5, 12)$ $= (36 + 6) \times = 41 \times 10^{-10}$

0122 73 75 987

If $\vec{F} = 5\hat{i} + 4\hat{j}$ and the two points A, B lie in the same plane as \vec{F} where A (2, 3) and $M_A = M_B$, then the equation of the straight line \overrightarrow{AB} is

(a) 4x-5y+7=0 $m=\frac{-4}{-5}=\frac{4}{5}$ (5x-4y+7=0) $m=\frac{-5}{-5}=\frac{4}{5}$ (c) 4x-5y=0 $m=\frac{-4}{-5}=\frac{4}{5}$ (5x+4y+7=0) $m=-\frac{5}{4}$ $\therefore MA = MB \implies \therefore AB // F$ $\therefore Slope f AB = Slope f F = \frac{4}{5}$ $\therefore AEL \therefore A(2,3)$ Stisfies its equation A(2)-5(3)+7=0

If the moment of the force $\vec{F} = 4\hat{i} + 6\hat{j}$ about the origin equals 80 \hat{k} , then the equation of the line of action of \vec{F} is

 $\begin{array}{c} (x_{1}y_{1}) = 0 \\ (x_{2}x_{3}y_{2} = 40 \\ (x_{1}y_{2}) = 40 \\ (x_{2}y_{1} = 40 \\ (x_{1}y_{2}) \\ (x_{2}y_{2} = 40 \\ (x_{2}y_{2}) \\ (x_{2}y_{2} = 40 \\ (x_{2}y_{2}) \\ (x_{1}y_{2}) \\ (x_{2}y_{2}) \\ (x_{2}y_{2})$

The moment of force \vec{F} about the point (3, 5) is 6 \hat{k} and its moment about the point $\vec{F}(1, -1)$ is $-6\hat{k}$, then its moment about the point $\cdots = \vec{0}$

(b) (2, 2) (c) (2,6) (a) (-1, -3)(d)(1,3): F bisects AB $\therefore M_a = -M_B$: F Passer through the midPoint & AB which is C $:.C = \frac{A+B}{2} = \frac{(3,5)+(1,-1)}{2} = (2,2)$

If the line of action of force \vec{F} , where $\vec{F} = \hat{i} + \hat{j}$, bisects \overline{AB} where A (3, -1) and D (1, 4) is the midpoint of \overline{AB} , then $\overline{M}_B = \cdots \hat{k}$

(c) 3 (d) - 14(a) - 7(b) 7 $M_{4} = AD \times F$ $= (-2,5) \times (1,1)$ $= (-2-5)\hat{k} = -7\hat{k}$ $:.M_B = 7 \hat{K}$

0122 73 75

987

If $\vec{F} = 3 i - 2 j$, A(-1, 2), the moment of \vec{F} about A is $\vec{M}_A = 9 \vec{k}$, the moment of \vec{F} about B is $\vec{M}_B = 9 \vec{k}$, then the coordinates of the point B can be represented by one of the following ordered pairs except

(a) $(5, -2)$	(b) (2,0)	(c) (-8, 4)	(d) $(8, -4)$
-: MA =	MB		
: AB	48		_
: 81of	e & AB :	= Slope of	F
	1-2 =	-2	
	X + I	3	
33.	-6 = -2x	-2 = 22	×+37=4
th	en try eo	Ch Choice	

(Trial 2021) Force $\vec{F} = 3\hat{i} + 2\hat{j}$ acts at a point. The moment of \vec{F} about origin is 15 \hat{k} , then intersection point of the line of action of \vec{F} with the y-axis is (a) (0, -5) (b) (0, 15) (c) (0, 5) (d) (0, -15)If $A \in \mathcal{Y}$ -axis $\implies := A = (0, b)$ $M_0 = OA \times F = 15 \hat{k}$ $(0, b) \times (3, 2) = 15 \hat{k}$ $-3b\hat{k} = 15 \hat{k}$

b = -5 : A = (0, -5)

0122 73 75 987

If the force $\vec{F} = (m, 7)$ acts at the point A (1, m) and its moment vector about B (0, 1) equals 5 \hat{k} , then m \in (a) $\{-2, 1\}$ (b) $\{-2, -1\}$ (c) $\{2, -1\}$ (d) $\{1, 2\}$ $\vec{Mg} = \vec{BA} \times \vec{F}$ $= (1, m - 1) \times (m, T) = 5 \hat{K}$ $(T - m + m) \hat{K} = 5 \hat{K}$ $m^2 - m - 2 = 0$ m = 2 of m = -1

		BY M
Force $\vec{F} = 3\hat{i} + 4\hat{j}$ acts at t	he point A $(2, 9)$ and the	e point B (3,7)
, then tangent of the angle		
(a) 2 (b) 4	(c) $\frac{2}{5}$	(d) $\frac{2}{\sqrt{5}}$
From Solid		γ5
S. Q. IIAx	BII C A	À.B NAILIBI
Sin 0 = <u>II Ax</u> II AN		NAL IR
: tan 0 = Sin	$\frac{\Theta}{\Theta} = \frac{\ \widehat{A} \times \widehat{B}\ }{\overline{A} \cdot \widehat{B}}$	
Gs	७ <u>म.</u> ह	-
	-	
	-(3,7) = (-1	,2)
$\overline{F} = (3, 4)$		
		o \)
$\tan \theta = \frac{11BA}{BA}$		<u>.3,4)</u> "
BA	· f (-1,2).	(3,4)
11-10		•
= -3+		. 2
		Cre
Another Sol.		
MB = BA × F =	$(-1,2) \times (3,4)$	A 0
= (-4-6) k		3
	ji ,	Aril 10
$\overline{\ F\ } = \sqrt{(3)^2 + (4)^2}$	$= 5 \Rightarrow L = \frac{\sqrt{10}}{10}$	$\frac{1}{1} = \frac{1}{5} = 2$
1ABII = (1)2+(2)2	•	15-4 -1
: t	$ an \theta = \frac{BC}{AC} = \frac{2}{7} = $	
Mr. Michael Gam		0122 73 75 987

0122 73 75 987

If $\vec{F} = 2\hat{i} + 3\hat{j}$ acts at point C and \vec{A}	$\vec{\mathbf{P}} = 4\hat{i} + 6\hat{i}$ and $\vec{\mathbf{N}}$	$\overline{\mathbf{A}} = (m^2 + 4)^{1}$
A	$\mathbf{D} = 41 + 0 \mathrm{J}$ and \mathbf{N}	$A_{\rm A} = (\text{III} + 4) \text{ K}$
$\overline{M_B} = (4 \text{ m}) \hat{k}$, then m =		
(a) 3 (b) 2	(c) 4	(d) 1
Slope of F = 3	,slope of	AB = 6 = 3
·; m,=m2=		۹ ۲
:. F // AB	: MA = N	
: m2+4 = 4m		
$m^2 - 4m + 4$	=0	
: m = 2		

The force \vec{F} acts at point A, the points A, B, C lies on the same plane as \vec{F} and $\overline{M_B} = -12\hat{k}$, $\vec{BC} \times \vec{F} = 23\hat{k}$, then $\overline{M_C} = \cdots$ (a) $-11\hat{k}$ (b) $11\hat{k}$ (c) $-35\hat{k}$ (d) $35\hat{k}$ $\vec{M_c} = \vec{CA} \times \vec{F}$ $= (\vec{CB} + \vec{BA}) \times \vec{F}$ $= \vec{CB} \times \vec{F} + \vec{BA} \times \vec{F}$ $= -\vec{BC} \times \vec{F} + \vec{BA} \times \vec{F}$ $= -\vec{BC} \times \vec{F} + \vec{AB}$ $= -23\hat{k} - 12\hat{k} = -35\hat{k}$

If the force $\vec{F} = (10, \frac{\pi}{3})$ acts at the point A $(\sqrt{3}, 2)$, then the moment of the force \vec{F} about the origin "O" equals (a) $-5\hat{k}$ (b) $5\hat{k}$ (c) $5\sqrt{3}\hat{k}$ (d) $-25\hat{k}$ $\vec{F} = (10 \text{ Cos } \frac{\pi}{3}, 108\text{ Sin } \frac{\pi}{3}) \cdot (5, 5\sqrt{3})$ $\vec{M}_{0} = O\vec{A} \times \vec{F}$ $= (\sqrt{3}, 2) \times (\sqrt{5}, 5\sqrt{3})$ $= (15 - 10)\hat{k} = 5\hat{k}$

math in use

The moment of a force about a point in 2D-coordinate system

First : Moment by using vector product

Answer the following questions

If \$\vec{F} = \hat{i} - 2\hat{j}\$ act at the point A (2,3)
Find : (1) Moment of \$\vec{F}\$ about the point B (2,1)
(2) Perpendicular length from the point B to the line of action of \$\vec{F}\$
() \$\vec{M}_B\$ = \$\vec{B}A\$ \$\times\$ \$\vec{F}\$

 $(2) L = \frac{\|\overline{MB}\|}{\|\overline{F}\|} = \frac{\|-2\widehat{K}\|}{\sqrt{1+4}} = \frac{2}{\sqrt{5}} = \frac{245}{5} L.4.$

0122 73 75 987

2 If $\vec{F} = 3\hat{i} - 4\hat{j}$ acts at the point A = (0, 2) and if B = (3, -2), C = (2, 3), D = (-2, 1), E = (5, -1) Prove using moments that the action line of \vec{F} (1) Passes through the point B (2) Bisects \overline{CD} (3) Parallel to \overline{CE}

(1)
$$\overline{MB} = \overline{BA} \times \overline{F} = (-3, u) \times (3, -u)$$

 $= (12 - 12) \widehat{F} = 0 \widehat{F}$
 \therefore line $\widehat{B} \overline{F}$ passes through \overline{B}
(2) $\overline{Mc} = \overline{CA} \times \overline{F} = (-2, -1) \times (3, -u)$
 $= (8 + 3) \widehat{F} = 11 \widehat{F}$
 $\overline{M0} = \overline{DA} \times \overline{F} = (2, 1) \times (3, -u)$
 $= (-8 - 3) \widehat{F} = -11 \widehat{F}$
 $\therefore \overline{Mc} = -\overline{MD}$
 $\therefore \overline{Inc} \widehat{B} \overline{F}$ bisects \overline{CD}
(3) $\overline{Mc} = 11 \widehat{F}$
 $\overline{ME} = \overline{EA} \times \overline{F} = (-5, 3) \times (3, -u)$
 $= (20 - 9) \widehat{F} = 11 \widehat{K}$
 $\therefore \overline{Mc} = \overline{ME}$
 $\therefore \overline{Inc} \widehat{B} \overline{F} - 1/\overline{CE}$

0122 73 75 987

0122 73 75 987

- **3** The forces $\overrightarrow{F_1} = 2 \cdot i 3 \cdot j$, $\overrightarrow{F_2} = 5 \cdot i + j$, $\overrightarrow{F_3} = -4 \cdot i + 7 \cdot j$ act at the points A (1, 1), B (-2, 2), C (3, 1) respectively. Find the moment vector of the resultant about the origin (0, 0)
 - $\vec{M}_{1} = \vec{OA} \times \vec{F}_{1} = (1,1) \times (2,-3) = -5 \hat{K}$ $\vec{M}_{*} = \vec{OB} \times \vec{F}_{2} = (-2,2) \times (5,1) = -12 \hat{K}$ $\vec{M}_{3} = \vec{OC} \times \vec{F}_{3} = (3,1) \times (-4,7) = 25 \hat{K}$ $\vec{M}_{1} + \vec{H}_{*} + \vec{M}_{3} = (-5 12 + 25) \hat{K}$ $= \mathcal{K} \hat{K}$

The forces $\overrightarrow{F_1} = 2\hat{i} - \hat{j}$, $\overrightarrow{F_2} = 5\hat{i} + 2\hat{j}$, $\overrightarrow{F_3} = -3\hat{i} + 2\hat{j}$ act at the point , A (1, 1) Prove using the moments that the line of action of the resultant is parallel to the straight line passing through the two points (2, 1) and (6, 4)

$\widehat{R} = \widehat{F}_{1} + \widehat{F}_{2} + \widehat{F}_{3} = (2, -1) + (5, 2) + (-3, 2)$ = (4, 3) $\widehat{M}_{c} = \widehat{CA} \times \widehat{R} = (-1, 0) \times (4, 3) = -3\widehat{R}$ $\widehat{M}_{D} = \widehat{DA} \times \widehat{R} = (-5, -3) \times (4, 3) = -3\widehat{R}$ $: \widehat{M}_{c} = \widehat{M}_{D}$ $: \widehat{CD} \ // \ \text{line} \ \widehat{S} \ \text{action} \ \widehat{S}_{R}$

B

15

9X I

5 The two forces $\overrightarrow{F_1} = \overrightarrow{m_1} + 2\overrightarrow{j}$, $\overrightarrow{F_2} = \cancel{L}\overrightarrow{i} - \cancel{j}$ act at the points $A_1 = (1, 1)$, $A_2 = (-1, -2)$ respectively. Find the values of the constants \overrightarrow{m} , \cancel{L} if the sum of their moments about each of the origin and about the point B = (2, 3) vanishes. $(\cancel{13}, -\frac{7}{9})$

 $M_0 = OA_X F_1 + OA_2 \times F_2 = O$ $-(1,1)\times(m,2)+(-1,-2)\times(L,-1)=0$ $(2-m)\hat{k} + (1+2L)\hat{k} = 0$ 2 -m+1+2L=0 2L-m=-3->= $M_B = BA, XF, +BA, XF_ = 0$ $= (-1, -2) \times (m, 2) + (-3, -5) \times (L, -1) - 0$ $(-2+2m)\hat{k} + (3+5L)\hat{k} = 0$ 5L+2m+1=0 5L + 2m = -11(M = .

0122 13 15

981