

The Cosine rule

Choose the correct answer

- \square In \triangle XYZ, the expression $\frac{\chi^2 + y^2 z^2}{2 \chi y}$ equals
- (a) cos X
- (b) cos Y
- (c) cos Z

(d) sin Z

(a) cos X

(b) sin Z

(c) cos Z

(d) sin X

$$\frac{\Upsilon^2 + Z^2 - \chi^2}{2 \Upsilon Z} = 65 \chi$$

In \triangle ABC, $\cos(A + B) = \dots$

(a) cos C

$$(b) - \cos C$$

(c) sin C

 $(d) - \sin C$

_65C+65C

If ABCD is a cyclic quadrilateral, then $\cos A + \cos C = \dots$

(a) 1

(b) zero.

(c) $\frac{1}{2}$

(d) - 1

In \triangle XYZ, $2 \times y \cos (X + Y) = \cdots$

(a)
$$\chi^2 + y^2 - z^2$$

(b)
$$y^2 + z^2 - X^2$$

(c)
$$\chi^2 - z^2 - y^2$$

(a)
$$\chi^2 + y^2 - z^2$$
 (b) $y^2 + z^2 - \chi^2$ (c) $\chi^2 - z^2 - y^2$ (d) $z^2 - \chi^2 - y^2$

$$2xy / - \cos Z$$
= -2xy / $\frac{x^2 + y^2 - z^2}{2xy}$
= - $[x^2 + y^2 - z^2] = -x^2 - y^2 + z^2$
= $z^2 - x^2 - y^2$

In \triangle LMN , $\ell = 5$ cm. , m = 7 cm. , $m (\angle N) = 60^{\circ}$, then $n = \cdots \cdots$ cm. (to the nearest tenth)

(a) 6.2

(b) 5

(c) 4.3

(d) 3.5

$$n^2 = l^2 + m^2 - 2 lm Gs N$$

 $N = \sqrt{(5)^2 + (7)^2 - 2(5)(7)} 6560$

= 139 = 6.2 -

In \triangle XYZ, x = 5 cm., y = 3 cm., $m (\angle Z) = \frac{2}{3} \pi$, then $z = \cdots$

(a) 7

(b) 8

(c)9

(d) 4

$$Z = \sqrt{(5)^2 + (3)^2 - 2(5)(3)} 6500 = 7$$

In \triangle ABC, if m (\angle A) + m (\angle B) = 120°, a = 2 cm., b = 3 cm., then c = cm.

$$(c)\sqrt{7}$$

$$(d)\sqrt{5}$$

$$C = \sqrt{(2)^2 + (3)^2 - 2(2)(3)} = \sqrt{7}$$

In \triangle ABC, a = 9 cm., b = 15 cm., $m (\angle C) = 106^{\circ}$, then its perimeter $\underline{\sim}$ cm.

(a) 44

(b) 24

(c) 34

(d) 28

$$C = \sqrt{(9)^2 + (15)^2 - 2(9)(15)} = 20$$

In \triangle ABC , b = 2 cm. , c = 2.5 cm. , cos A = $\frac{2}{5}$ • then \triangle ABC is

(a) a right angled triangle.

(b) an isosceles triangle.

(c) an equilateral triangle.

(d) a scalene.

$$a = b^{2} + c^{2} - 2bCC_{5}A$$

$$a = \sqrt{(2)^{2} + (2.5)^{2} - 2(2)(2.5)(\frac{2}{5})} = 2.5 - \frac{2.5}{5}$$

 \square In \triangle XYZ, if X = y, then $\cos X = \cdots$

(a)
$$\frac{2 y^2}{z}$$

(b)
$$\frac{z}{2y}$$

(c)
$$\frac{z}{4 x}$$

(d)
$$\frac{y}{2 x}$$

$$= \frac{Z}{27Z} = \frac{Z}{23}$$

 \square In \triangle ABC, $\cos(A + B) = \cdots$

(a)
$$\frac{a^2 + b^2 - c^2}{2 a b}$$

(b)
$$\frac{a^2 + c^2 - b^2}{2 a b}$$

(c)
$$\frac{b^2 + c^2 - a^2}{2bc}$$

(a)
$$\frac{a^2 + b^2 - c^2}{2 a b}$$
 (b) $\frac{a^2 + c^2 - b^2}{2 a b}$ (c) $\frac{b^2 + c^2 - a^2}{2 b c}$ (d) $\frac{c^2 - a^2 - b^2}{2 a b}$

Cos (A+B)= - Cos C
= -
$$\left[\frac{a^2+b^2-c^2}{2ab}\right]$$

= $\frac{c^2-a-b^2}{2ab}$

(a) 110

(b) 150

(c) 100

(d) 120

Cos
$$C = \frac{a^2 + b^2 - c^2}{2ab}$$

Cos $C = \frac{(3)^2 + (5)^2 - (7)}{2(3)(5)} = -\frac{1}{2}$
 $m(xc) = \frac{(5)^2 - (7)^2}{2(5)^2} = \frac{1}{2}$

In \triangle ABC, b = 4 cm., a + c = 11 cm., a - c = 1 cm., then

the triangle is an obtuse angled triangle.

the triangle is a right angled triangle.

(c) m (\angle B) = 2 m (\angle A)

(d) m (\angle A) = 2 m (\angle B)

$$GSA = \frac{b^2 + c^2 - a^2}{2bc}$$

$$= \frac{16 + 25 - 36}{2(4)(5)} = \frac{1}{8}$$

Cos B =
$$\frac{c^2 + a^2 - b^2}{2 \text{ Ca}}$$

= $\frac{25 + 36 - 16}{2 (5)(6)} = \frac{3}{4}$
m (LB) = $\frac{41^2}{24^2} = \frac{3}{4}$

In \triangle ABC, c (a cos B + b cos A) =

(a) $2 c^2$

(b)
$$c^2$$

$$(c) a^2$$

(d) b^2

$$C\left[a.\frac{c^{2}+a^{2}-b^{2}}{2ca}+b.\frac{b^{2}+c^{2}-a^{2}}{2bc}\right]$$

$$= \frac{c^2 + a^2 - b^2}{2} + \frac{b^2 + c^2 - a^2}{2}$$

$$= \frac{c^2 + 4 - 4 + 4 + 2 - 4}{2} = \frac{2c^2}{2} = c^2$$

In
$$\triangle$$
 ABC, if $\frac{\sin A}{\sin B} = 2 \cos C$, then

$$(a) b = c$$

(b)
$$a = c$$

$$(c) a = b$$

(d)
$$a = b = c$$

$$a = 2b. Cos c$$
 $a = 2b. Cos c$
 $a = 2b. Cos$

$$\frac{a^2 + b^2 - c^2}{2ab} = -\frac{13}{2ab}$$

Cos (LC) =
$$-\frac{13}{2}$$

m(LC) = 150°

In \triangle ABC, if m (\angle C) = 60°, $a^2 + b^2 - c^2 = k \ a \ b$, then $k = \dots$ (a) $\frac{1}{2}$ (b) 2 (c) 1 (d) -1

$$\frac{a^2 + b^2 - c^2}{2ab} = \frac{Kab}{2ab}$$

Cos
$$C = \frac{K}{2}$$

Cos 60 =
$$\frac{K}{2} = \frac{1}{2}$$
 $\Rightarrow K = 1$

In triangle ABC, $c^2 = (a + b)^2 - ab$, then m ($\angle C$)°

(a) 30

(d) 120

$$C^2 = 0^2 + 2ab + b^2 - ab$$
 $C^2 = 0^2 + b^2 + ab$

$$\frac{a^2+b^2-c^2}{2ab}=-\frac{ab}{2ab}$$

Cos
$$C = -\frac{1}{2}$$

In \triangle ABC, $4 \sin A = 3 \sin B = 6 \sin C$, then m (\angle C) = (to the nearest degree)

(a) 89°

(d)
$$82^{\circ}$$

Cos C:
$$\frac{a^2+b^2-c^2}{2ab}$$
: $\frac{9m^2+16m^2-4m^2}{2(3m)(4m)}$ = $\frac{7}{8}$

$$m(< c) = 29^{\circ}$$

In \triangle ABC, $\frac{1}{2} \sin A = \frac{1}{3} \sin B = \frac{1}{4} \sin C$, then $\cos C = \dots$

(a)
$$\frac{-2}{3}$$

(b)
$$\frac{2}{3}$$

(c)
$$\frac{-1}{4}$$

(d)
$$\frac{1}{4}$$

a:b:C:2:3:4

Cos
$$C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{4m^2 + 9m^2 - 16m^2}{2(2m)(3m)}$$

$$=\frac{-3m^2}{12m^2}=-\frac{1}{4}$$

If ABC is a triangle in which: $5 \sin A \sin B = 6 \sin B \sin C = 9 \sin C \sin A$, then m (\angle C) \simeq ······°

(a) 28

(d) 42

Gs
$$C = \frac{a^2 + b^2 - c^2}{2ab}$$

$$GSC = \frac{36m^2 + 81m^2 - 25m^2}{2(6m)(9m)}$$

$$Cosc = \frac{23}{27}$$

$$m(C) = Cos(\frac{23}{27}) = 31^{\circ} 85^{\circ} 11^{\circ}$$

If ABC is a triangle in which: 6 a = 4 b = 3 c, then the measure of the smallest angle in the triangle \simeq

(a) 57° 28

(b) 41° 12

(c) 28° 57

(d) 36° 52

$$\frac{6a = 4b = 3c}{12} \Rightarrow \frac{a}{2} = \frac{b}{3} = \frac{c}{4}$$

a:b: C. 2:3:4

b=3m

c=4m

Cos A:
$$\frac{b^2 + c^2 - a^2}{2bc}$$

$$=\frac{9m^2+16m^2-4m^2}{2(3m)(4m)}=\frac{7}{8}$$

$$m(\angle A) = G_{5}^{-1}(\frac{7}{8})$$
= 28° 57

C=8m

$$Q^2 = b^2 + c^2 - 2bc Gs A$$
 $(21)^2 = (5m)^2 + (8m)^2 - 2(5m)(8m) Gs 60$
 $441 = 25m^2 + 64m^2 - 40m^2$
 $441 = 49 m^2 \implies m^2 = 9$

$$b = 5m = 5(3) = 15$$

 $c = 8m = 8(3) = 24$
 $P. & DABC = a+b+c$
 $= 21 + 15 + 24 = 60$

Mr. Michael Gamil

0122 73 75 987

In the acute-angled triangle ABC, a = 8 cm., b = 5 cm., $m (\angle C) = 60^{\circ}$ • then m ($\angle A$) \simeq

$$C^2 = a^2 + b^2 - 2ab$$
 Gs C

$$C = \sqrt{(8)^2 + (5)^2 - 2(8)(5)(6560)} = 7$$

$$Cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

Cos A =
$$\frac{(5)^2 + (7)^2 - (8)^2}{2(5)(7)} = \frac{1}{7} ::m(LA)$$

= 81° 47'12'

ABCD is a parallelogram in which AB = 8 cm. , BC = 11 cm. , BD = 9 cm. , then the length of \overline{AC} = cm.

(a) 9

(b) 10

(c) 11

U

11

(d) 17

 $\frac{\text{In } \triangle ABD}{2ab}$ $\frac{2ab}{2ab}$

 $=\frac{23}{33}$

In D ADM

$$AM = d = \sqrt{(11)^2 + (4.5)^2 - 2(11)(4.5)(\frac{23}{33})} = 8.5$$

ABCD is quadrilateral in which AB = 22 cm., BC = 25 cm., DC = 18 cm.

, m (
$$\angle$$
 ADB) = 65° , m (\angle DBA) = 50° , then m (\angle CBD) \simeq

(a) 80° 75

(b) 42° 49 19

(c) 44° 28 6

(d) 85° 30

In DABD

=:m(CA) = m(CBDA)=65

C>B= C2+92-p3

$$GSB = \frac{(22)^{2} + (25)^{2} - (18)}{2(22)(25)} = \frac{157}{220}$$

ABC is a triangle in which $a = \sqrt{2}$ cm., $b = \sqrt{3}$ cm., c = 2 cm.

, then
$$\frac{\cos A \cos B}{\cos (A + B)} = \frac{\cos A \cos B}{\cos (A + B)}$$

(a)
$$\frac{8}{15}$$

(b)
$$\frac{-15}{8}$$

$$\frac{-17}{15}$$

(d)
$$\frac{8}{17}$$

GSB =
$$\frac{c^2 + a^2 - b^2}{2Ca}$$
 GSC = $\frac{a^2}{2}$

61c =
$$\frac{a^2+b^2-c^2}{2ab}$$

In the opposite figure:

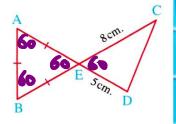
CD = cm

(a) 6

(b) 7

(c) 8

(d)9



In the opposite figure:

ABCD is a parallelogram

 \Rightarrow then AC = cm.

(a)
$$2\sqrt{13}$$

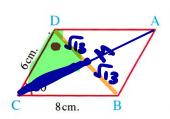
(b) $2\sqrt{37}$

(c)
$$2\sqrt{17}$$

(d) 148

In DBCD

$$= \frac{1}{(6)^{2} + (8)^{2} - 2(6)(8)} = \frac{1}{(6)^{2} + (6)^{2} - 2$$



$$= \frac{36 + 4 \times 13 - 64}{500}$$

$$= \frac{36 + 4 \times 13 - 64}{500}$$

$$= \frac{36 + 4 \times 13 - 64}{500}$$

In the opposite figure:

ABCD is a parallelogram

$$m (\angle ABD) = 80^{\circ} \cdot BD = 7 cm.$$

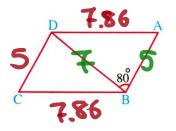
AB = 5 cm., then the perimeter

of parallelogram = to the nearest cm.

(a) 25

(b) 26

(c) 29



(d) 30

In DABD

In the opposite figure: In ACO

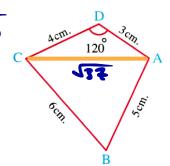
(b)
$$\frac{2}{5}$$

(c)
$$\frac{3}{5}$$

(d)
$$\frac{4}{5}$$

$$GSB = \frac{c^2 + a^2 - b^2}{2ca}$$

$$=\frac{25+36-37}{2(5)(6)}=\frac{2}{5}$$



In the opposite figure:

ABCD is a quadrilateral in which AB = 8 cm.

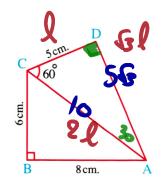
$$,BC = 6 \text{ cm.}, m (\angle B) = 90^{\circ}$$

, DC = 5 cm. and m (
$$\angle$$
 ACD) = 60°

, then the area of the circumcircle of

the triangle ADC = \cdots cm².

(b) 16π



(c) 25
$$\pi$$

(d) 49 π

In the opposite figure:

(2) (LADB)= 8/10

ABCD is a rectangle in which

DC = 6 cm., BC = 8 cm.

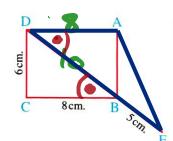
and $E \subseteq \overrightarrow{DB}$ where BE = 5 cm.

, then $AE = \cdots cm$.

$$(a)\sqrt{93}$$

 $(b)\sqrt{97}$

(c) 10



(d) $\sqrt{103}$

IN DADE

AE = d = (e²+a²-2eacos (LADB)

= (8)2+(15)-2(8)(15)(4) = 197-

In the opposite figure:

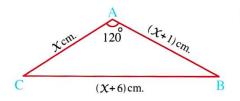
The value of $X = \cdots cm$.

(a) 7

(b) 8

(c)9

(d) 10

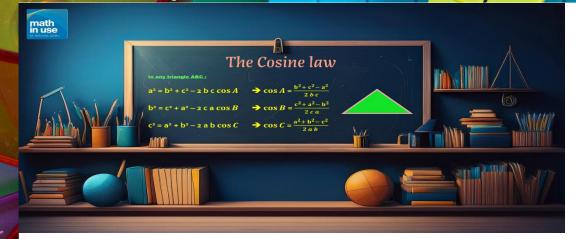


$$a = b + c^{2} - 2bC CosA$$

$$(x+6) = x^{2} + (x+1)^{2} + 2x(x+1) Csx6$$

$$x^{2} + 12x + 36 = x^{2} + x^{2} + 2x + 1 + x^{2} + x$$

$$2x^{2} - 9x - 35 = 0$$



Exercise 2

The Cosine rule

Answer each of the following questions

1 XYZ is a triangle in which: $m (\angle Z) = 95^{\circ}$, x = 13 cm., y = 16 cm. Find z < 21.5 cm.

$$Z = \sqrt{(13)^2 + (16)^2 - 2(13)(16)} G_{595} \simeq 21.5$$

Find the measure of the smallest angle in \triangle XYZ, where X = 18 cm., y = 27 cm. and z = 24 cm. Find also the area of the circumcircle of \triangle XYZ

« 40° 48°, 596 cm². »

$$GSX = \frac{y^2 + z^2 - x^2}{2yZ}$$

$$=\frac{(27)^2+(24)^2-(18)^2}{2(27)(24)}=\frac{109}{144}$$

$$\frac{2}{2} \frac{2}{\sin x} = r \Rightarrow \frac{18}{2} \frac{18}{2} \frac{18}{\sin x} = r$$

The perimeter of the triangle ABC is 52 cm., a = 13 cm. and b = 17 cm. Find the measure of the greatest angle in the triangle, then find the area of the triangle to the nearest centimetre square.

P=a+b+c=52

13+17+c=52

... c=52-30=22...

LC is the greatest angle

Cos c=
$$\frac{a^2+b^2-c^2}{2ab}$$

= $\frac{(13)^2+(17)^2-b^2}{2(13)(17)} = -\frac{1}{17}$

m(LC)= $\cos^2(-\frac{1}{17}) = 93^2 22^2 20^2$

A. of DABC= $\frac{1}{2}$ ab Sin C

= $\frac{1}{2}(13)(17)\sin 93^2 22^2 20^2$

= $\frac{1}{2}(13)(17)\sin 93^2 22^2 20^2$

A XYZ is a triangle in which $\sin X : \sin Y : \sin Z = 7 : 8 : 12$ Find the measure of its greatest angle.

« 106° 4 »

$$\therefore x = 7m \qquad y = 8m$$

Cos
$$Z = \frac{2^2 + y^2 - z^2}{2x^2}$$

$$=\frac{(7m)_{+}(8m)_{-}(12m)^{2}}{2(7m)(8m)}=\frac{-31}{112}$$

$$m(LZ) = (65)(-31) = 166$$

Z = 12m

13 2

(5) ABC is a triangle in which: a = 4 cm. b = 5 cm. and $\cos C = \frac{-1}{2}$

Find c and the area of \triangle ABC

$$c^2 = a^2 + b^2 - 2ab$$
 Gsc

 $C = \sqrt{16 + 25 - 2(4)(5)(-\frac{1}{2})} = 61 \approx 7.8$

A. & DABC = 1 ab Sin C

ABC is a triangle in which $\frac{1}{3} \sin A = \frac{1}{4} \sin B = \frac{1}{5} \sin C$ Find m (\angle C) and if the perimeter of the triangle = 24 cm. find its area.

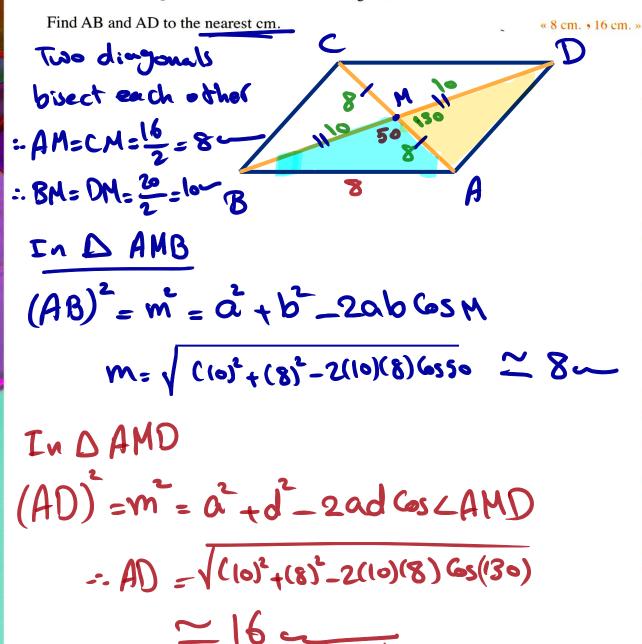
$$CosC = \frac{a^2 + b^2 - c^2}{2ab}$$

$$=\frac{(3n)^2+(4m)^2-(5m)^2}{2(3m)(4m)}=0$$

Mr. Michael Gamil

0122 73 75 987

ABCD is a parallelogram in which: AC = 16 cm., DB = 20 cm. and $m (\angle AMB) = 50^{\circ}$, where M is the point of intersection of its diagonals.



(8) [1] If the perimeter of the parallelogram ABCD is 20 cm., the ratio between the two adjacent side lengths is 2:3 and BD = 8 cm., then find the length of AC

lt AB=2m, BC=3m AB+BC . 10 2m + 3m = 10

AB=4- BC=6-

In DADB

Cas (LADB): b+a-d

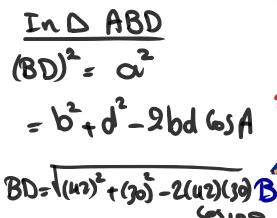
Cos D = $\frac{(6)^2 + (8)^2 - (4)^2}{2(6)(8)} = \frac{7}{8} = \frac{40 - 2(4)(6)(6)}{50} = \frac{7}{10} = \frac{1}{10} = \frac{1}{10$

m(LADB)=65(Z)=2857 =AC=2AM=250

MOA A NI (AM) = d= 02 + m2 - 2am Gos D

26.3

9 ABCD is a trapezium in which: \overline{AD} // \overline{BC} , AD = 42 cm., AB = 30 cm., BC = 48 cm. and m ($\angle A$) = 100° Find the length of each of: \overline{BD} , \overline{CD}



Cos (ADB)=
$$m(2DBC)$$

= 0.8477
 $I_{N} \triangle BCD$
(CD)= b^{2}
= $C^{2} + d^{2} - 2 cd Gs B$
= $(55.69)^{2} + (48)^{2} - 265.69)(48)$
(G) B

= 873.5

(10) ABCD is a cyclic quadrilateral in which AB = AD = 9 cm., BC = 5 cm., CD = 8 cm.Find: AC « 11 cm. »

ABC is a triangle in which: a = 5 cm. , $m (\angle B) = 120^{\circ}$ and its area is $10\sqrt{3}$ cm².

Find each of c and b and also m ($\angle A$)

« 8 cm. , 11.36 cm. , 22° 24 »

12 If $\sin A = \frac{2}{3} \sin B = \frac{1}{2} \sin C$, c - a = 4 cm.

, find each of : b and m ($\angle A$)

«6 cm. , 28° 57 »

ABC is a triangle whose perimeter is 34 cm. a = 12 cm. and b - c = 6 cm.

Find the measure of its smallest angle, then calculate its area. « 34° 46 19, 47.9 cm², »

 \square ABC is a triangle in which (a + b + c) (a + b - c) = k a b

prove that : $k \in]0$, 4[, then find : $m (\angle C)$ when k = 1

« 120° »

15 ABC is a triangle in which: $b^2 = (c - a)^2 + c$ a Find: $m (\angle B)$

« 60° »

In \triangle ABC: $\cos B = \frac{c}{2a}$, prove that: \triangle ABC is an isosceles triangle.

In the parallelogram ABCD, prove that: $(AC)^2 + (BD)^2 = 2 (AB)^2 + 2 (BC)^2$